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The Intermediate Value Theorem (Statement 1)
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Recall:  Continuity - The e-d Definition
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Recall:  Least Upper Bounds

A real number M is the least upper bound, or Supremum, of a set 
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1. M is an upper bound of E;

2. If 
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Recall: The Completeness Axiom
Let E be a non-empty subset of 
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1. If E is bounded above, then E has a least upper bound.

2. If E is bounded below, then E has a greatest lower bound.

The Intermediate Value Theorem (Statement 2)
Suppose that f is continuous on 
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	Analysis
WLOG (Without Loss of Generality), assume
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The first question is how to choose 
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.  Let us look at two different scenarios.
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	A possible way to choose 
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We need a contradiction.
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 Lemma 1
Let 
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Lemma 2
Let 
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 The Intermediate Value Theorem (Statement 2)
Suppose that 
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